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Abstract

A dual nature of propensity score manifests itself in being both a conditional probability

of treatment assignment and a covariate balancing score. The standard approach in

propensity score estimation exploits the former feature leaving balancing properties

to be checked after estimation. Imai and Ratkovic (2014) exploit both, proposing an

estimator that automatically balances the conditional distribution of covariates (CBPS,

covariate balancing propensity score). Obtained through a GMM estimation, CBPS is a

convenient way to obtains propensity score estimates or weights to be used in subsequent

estimations. Monte Carlo experiments confirm its good performance in reducing bias

of treatment effects estimates. This paper reviews the method and introduces Stata

user-written package CBPS which implements the estimator.

1 Introduction

Conditional independence assumption is required in a vast majority of non-experimental

treatment evaluations. Rosenbaum and Rubin (1983) showed that if it is satisfied while

conditioning on a set of covariates, say Xi, then it is also satisfied conditional on a single-

valued function of these covariates. Since this seminal paper, the literature has flourished,
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exploiting the single-valued fuction in the form of the conditional probability of treatment

assignment, called in the literature the propensity score. Propensity score is of a particular

interest for the matchng estimators, as it overcomes the curse of dimensionality. Additionally,

researchers find it useful to produce weights balancing distributions of observations.

However, misspecification in the propensity score model might lead to severely biased esti-

mates of treatment effects (Smith and Todd, 2005). Since in vast majority of applications the

correct model is unknown, evaluating the quality of the treatment effect estimators remains

a challenge. Given a successful estimation, distributions of covariates in the treated and non-

treated cells of propensity score should be statistically equal. Any significant discrepancy

might indicate either the misspecification of probability model or a failure of CIA assump-

tion (Caliendo and Kopeinig, 2008). Therefore one of the suggested checks of the quality of

propensity score estimates is a covariate balance check (Dehejia and Wahba, 2002). It relies

on distinguishing narrow intervals of propensity score values and comparing the mean and

variance of the covariates between the treated and untreated units within these intervals.

Imai and Ratkovic (2014) propose to systematically exploit the moments of the distribution

of covariates for the treated and untreated units. They show theoretically that GMM estima-

tion of the propensity score imposes balance on the conditional distributions. They exploit

the dual nature of propensity score which is both the conditional probability of treatment

assignment and covariate balancing score. Since this estimator is based on moments of the

distribution, the functional form is not relevant for identification, making the estimator ro-

bust to model misspecification. The estimator is called Covariate Balancing Propensity Score

(CBPS).

The major applications of the CBPS estimator concern obtaining propensity score estimates

or weights that may be used in subsequent steps of estimation, e.g. matching analysis or

weighted regressions. It makes CBPS a useful tool in many fields of applied econometrics.

In this paper we focus on causal framework. The paper is structured as follows. Section

2 provides theoretical background of CBPS estimator, section 3 gives the details of Stata

user-written package CBPS that implements CBPS, section 4 describes saved results of the

estimation commands, section 5 provides some empirical examples, section 6 concludes.
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2 Covariate Balancing Propensity Score

In this section a brief note on CBPS derivation is delivered (for more details see Imai and

Ratkovic, 2014). Depending on which treatment effect is the parameter of interest, researchers

may choose between average treatment effect (ATE) and average treatment effect on the

treated (ATT) version of CBPS estimation.

We use the following notation. Assume a sample with N observations. Ti denotes a binary

treatment assignment for a unit i and
∑

i Ti = N1. Xi is a K dimensional vector of covariates,

Fβ(Xi) and fβ(Xi) are respectively cumulative and probability distribution functions.

2.1 ATE

We start with the version of CBPS that reweighs both treated and control subpopulations.

It is particularly relevant if ATE is the effect of main interest.

Let g be a measurable function of Xi. Consider a set of moment conditions:

E
[Tig(Xi)

Fβ(Xi)

]
= E

[(1− Ti)g(Xi)

1− Fβ(Xi)

]
(1)

Conditionally on Xi it is satisfied for any g(·), as E[Ti|Xi] = Fβ(Xi) (i.e. propensity score

is a conditional probability of treatment assignment). It does not depend on any functional

form for Fβ(Xi) and assures proper balance even if the conditional independence assumption

does not hold, improving balance of observed Xi regardless of the unobserved variables (Imai

and Ratkovic, 2014). Hence, the desired robustness to the functional form misspecification is

assured. Additionally, one may perceive it as a balancing condition which balances weighted

distributions of g(·) in treated and non-treated subpopulations (i.e. propensity score is a

balancing score).

The easiest way to think about the CBPS is to take g(Xi) = Xi and by that construct a weight

which would make averages of covariates in treated and control groups equal. Rewriting

equation (1):

E
[ Ti − Fβ(Xi)

Fβ(Xi)(1− Fβ(Xi))
Xi

]
= 0 (2)
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Equation (2) provides the set of K moment conditions sufficient to just-identify K parameters

of the propensity score function. Additionally, it defines also a balancing weight:

wβ(Ti, Xi) =
Ti − Fβ(Xi)

Fβ(Xi)(1− Fβ(Xi))
.

Given the appropriate moment conditions, Imai and Ratkovic (2014) define CBPS in terms

of standard GMM framework:

β̂GMM = arg min
β

E[gβ(Ti, Xi) ·Wβ(Ti, Xi) · gβ(Ti, Xi)] (3)

where gβ(Ti, Xi) =
Ti−Fβ(Xi)

Fβ(Xi)(1−Fβ(Xi))
Xi is a vector of moment conditions of interest, Wβ(Ti, Xi)

is weighting matrix.

Wβ(Ti, Xi) = E[gβ(Ti, Xi)gβ(Ti, Xi)
′].

W depends among others on β, leading to a so called continuous updating GMM (Hansen

et al., 1996). Despite clear advantages of that method, it may lead to severe numerical

difficulties throughout the estimation process. To address this problem, CPBS implements

also a a two-step estimator. Sample weighting matrix W is calculated using preliminary

β̂MLE obtained in the first step maximum likelihood estimation (depending on the functional

form chosen, logit or probit model) and remains fixed in subsequent the GMM estimation.

In turn, the covariance matrix of moments is obtained using the same formula as weighting

matrix, Σβ(Xi, Ti) = E[gβ(Ti, Xi)gβ(Ti, Xi)
′] However, here the already estimated β̂GMM is

used.

β̂GMM has asymptotically normal distribution with covariance matrix:

1

N
(G′WG)−1G′WSWG(G′WG)−1.

2.2 ATT

If the effect of interest is ATT, a researcher wants to adjust the distribution of the control

group such that it matches average characteristics of treated units. Consider a population

moment equality:

E
[
Tig(Xi)

]
= E

[Fβ(Xi)(1− Ti)g(Xi)

1− Fβ(Xi)

]
(4)
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Conditionally on Xi it is satisfied for all measurable functions g(·). Define g(Xi) = Xi. It

provides K moment conditions of the form:

E
[Ti − Fβ(Xi)

1− Fβ(Xi)
Xi

]
= 0. (5)

which is sufficient to just-identify K parameters of the propensity score function Fβ(Xi). The

balancing weights are given by:

wβ(Ti, Xi) =
N

N1

Ti − Fβ(Xi)

1− Fβ(Xi)
.

The ATT version of CBPS is a GMM estimator which exploits moment conditions from the

equation (5) with a weighting matrix

Wβ(Ti, Xi) = E[gβ(Ti, Xi)gβ(Ti, Xi)
′].

2.3 Overidentification

Imai and Ratkovic (2014) emphasize close relation between ATE-version CBPS moment

conditions and the maximum likelihood framework of standard binary probability models.

Setting g(Xi) = fβ(Xi) in equation (1) one obtains immediately the first order conditions

of a maximum likelihood estimand. Therefore, it is possible to impose additional moment

conditions that would overidentify the model:

E
[Tifβ(Xi)

Fβ(Xi)

]
= E

[(1− Ti)fβ(Xi)

1− Fβ(Xi)

]
(6)

Accordingly, the set of moment conditions for ATE and ATT is given by :

gβ(Ti, Xi)
ATE =

 Ti−Fβ(Xi)
Fβ(Xi)(1−Fβ(Xi))

fβ(Xi)

Ti−Fβ(Xi)
Fβ(Xi)(1−Fβ(Xi))

Xi

 = 0 (7)

gβ(Ti, Xi)
ATT =

 Ti−Fβ(Xi)
Fβ(Xi)(1−Fβ(Xi))

fβ(Xi)

N
N1

Ti−Fβ(Xi)
1−Fβ(Xi)

Xi

 = 0 (8)

The rest of estimation follows the steps described in previous subsections. However, the

number of moment conditions is now 2K, whereas the number of parameters to estimate is
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only K. Overidentified estimators are supposed to be more efficient in large samples at the

cost of increased biased in finite samples (Imai and Ratkovic, 2014). Additionally, weights

obtained from overidentified model do not balance perfectly the conditional distributions,

which is why they may not be of primary interest for further use. Nevertheless, overiden-

tified model enables a researcher to perform Sargan-like test of overidentifying restrictions,

which is basically a specification test. A rejection of the null may suggest that conditional

independence assumption does not hold e.g. because of omitted covariates or a failure to

control for heterogeneity among units.

2.4 Balancing properties

Imai and Ratkovic (2014) cite two measures of covariate imbalance. The overall covariate

imbalance (Rosenbaum and Rubin, 1985) is calculated as follows:[( 1

N

N∑
i=1

w ˆβGMM (Ti, Xi)Xi

)′( 1

N

N∑
i=1

XiX
′
i

)−1( 1

N

N∑
i=1

w ˆβGMM (Ti, Xi)Xi

)].5
(9)

and the standardized bias for treated units:[( 1

N

N∑
i=1

w ˆβGMM (Ti, Xi)Xi

)′( 1

N1

N∑
i=1

TiXiX
′
i

)−1( 1

N

N∑
i=1

w ˆβGMM (Ti, Xi)Xi

)].5
(10)

Postestimation command CBPS imbalance calculates both of them. The overall and treated

units imbalance statistics should equal zero for ATE and ATT just-identified estimates re-

spectively. Therefore, they constitute a simple check if the optimization algorithm has found

a proper minimum. They might also serve to verify whether imposing overidentifying restric-

tions has not been rejected by the data.

3 Stata implementation

The package to estimate CBPS consists of CBPS main command and two postestimation

functions predict and CBPS imbalance.
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3.1 CBPS function

syntax

CBPS depvar
[
indepvars

] [
if
] [

in
] [

, ate att logit probit over traceoff outputoff

optimization technique(string) evaluator type(string) ptol(#) vtol(#) nrtol(#)
]

main options

ate calculates the propensity score using ATE formulas.

att calculates the propensity score using ATT formulas (default option).

logit uses logistic cdf as a functional form for the propensity score (default option).

probit uses normal cdf as a functional form for the propensity score.

over adds overidentifying restrictions based on ML first order conditions.

display options

traceoff suppresses the iteration details of optimizing algorithm.

outputoff suppresses coefficient table.

programmer’s options

optimization technique(string) sets the optimization technique. See optimize() for more

details; default is optimization technique("bgfs").

evaluator type(string) sets the evaluator type for optimization. See optimize() for more

details; default is evaluator type("gf1").

ptol(#), vtol(#) and nrtol(#) set tolerance values for convergence. See optimize() for

more details; default values are 1e-6, 1e-7 and 1e-8 respectively.

Note that the result of the overidentification test is delivered in CBPS any time a user estimates
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an overidentified model.

3.2 Predict after CBPS

syntax

predict saves scores after CBPS estimation. It may be either estimated propensity score or

balancing weight.

predict varname
[
if
] [

in
] [

, replace pscore bscore
]

options

replace overwrites varname if existed previously.

pscore calculates the estimated propensity score (default option).

bscore calculates the estimated balancing weights.

3.3 CBPS imbalance

CBPS imbalance calculates measures of covariate imbalance.

syntax

CBPS imbalance
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Scalars

e(N) number of observations

e(N1) number of treated observations

e(N0) number of control observations

e(J) J-Stat in χ2 overid. test (added by over option)

e(Jdf) degrees of freedom in the overid. test (added by over option)

e(Jpval) p-val. in the overid. test (added by over option)

e(i ate) measure of overall imbalance (added by CBPS imbalance command)

e(i att) measure of imbalance for the treated units (added by CBPS imbalance command)

Macros

e(cmd) CBPS

e(cmdline) command as typed

e(depvar) name of treatment assignment variable

e(link) functional form chosen for propensity score

e(predict) program used to implement predict

e(properties) b V

e(type) ate or att

Matrices

e(b) coefficient vector

e(V) covariance matrix of estimators

Functions

e(sample) marks estimation sample

4 Saved results

5 Examples

This section contains two examples on how to use the CBPS command. They do not aim to

prove superiority or inferiority of CBPS performance comparing to other estimators. For a

discussion on these issues see Imai and Ratkovic (2014).
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5.1 Graduate admission data

We begin with an example of data on graduate studies admissions. The file admit.dta may
be easily downloaded at:

. use https://stats.idre.ucla.edu/stat/stata/dae/binary.dta, clear

The dependent variable is a binary indicator of candidate’s admission to a graduate pro-

gram (admit). We use candidate’s GRE result, GPA and the rank of college they attended

as covariates. The college rank is a qualitative variable, but CBPS fully supports factors.

We suppress iteration output using option traceoff. Standard output of CBPS contains

estimated parameters along with significance tests:

. CBPS admit gre gpa ib4.rank, traceoff

Covariate Balancing Propensity Score estimation

admit Coef. Std. Err. z P>|z| [95% Conf. Interval]

admit

gre .0020149 .0012249 1.64 0.100 -.0003858 .0044156

gpa .8082846 .3700951 2.18 0.029 .0829115 1.533658

rank

1 1.568305 .4225452 3.71 0.000 .740132 2.396479

2 .8746031 .3677326 2.38 0.017 .1538605 1.595346

3 .2098293 .3939625 0.53 0.594 -.5623229 .9819815

_cons -5.407959 1.140942 -4.74 0.000 -7.644165 -3.171753

Comparing the just-/over-identified models may be used to verify the specification test.

Comparing ATE/ATT may be used to analyze the sources of the treatment effects. The

following code produces desired result using esttab command:

. qui: CBPS admit gre gpa ib4.rank, ate

. qui: CBPS_imbalance

. qui: estimates store jate

. qui: CBPS admit gre gpa ib4.rank, over ate

. qui: CBPS_imbalance
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. qui: estimates store oate

. qui: CBPS admit gre gpa ib4.rank

. qui: CBPS_imbalance

. qui: estimates store jatt

. qui: CBPS admit gre gpa ib4.rank, over

. qui: CBPS_imbalance

. qui: estimates store oatt

. esttab jate oate jatt oatt , mtitles("exact ate" "over ate" "exact att" "over att") sfmt

> (3) keep(gre) scalars(i_ate i_att J Jpval)

(1) (2) (3) (4)

exact ate over ate exact att over att

admit

gre 0.00262* 0.00189* 0.00201 0.00224*

(2.19) (2.23) (1.64) (2.34)

N 400 400 400 400

i_ate 0.000 0.100 0.067 0.059

i_att 0.073 0.062 0.000 0.031

J 2.085 1.421

Jpval 0.912 0.965

t statistics in parentheses

* p<0.05, ** p<0.01, *** p<0.001

The imbalance statistics equal zero for estimates from just-identified models indicating nu-

merical convergence of the optimizer. Overidentified models pass the specification test for

any conventional confidence level.

5.2 Causal inference with the LaLonde data

Another example demonstrates applications of CBPS in a broader context. We consider

causal effects of job training program introduction on earnings using well known LaLonde

(1986) data from National Supported Work (NSW) with additional control observations from

Current Population Survey (CPS) provided by Dehejia and Wahba (1999, 2002). Since the
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NSW data is experimental, randomization assures all the assumptions necessary for the causal

inference validity to hold even for conventional estimators consistent. Therefore, estimates

on NSW subsample would constitute a benchmark for estimates on CPS combined with NSW

sample (Dehejia and Wahba, 1999).

The pooled sample contains 16437 observations, out of which 445 come from the original

NSW experiment and includes 185 treated individuals. We model the treatment assignment

using pretreatment covariates. We are interested in the pre- and post-treatment difference.

First, we analyze ATE. We compare the results from a conventional regression of ∆Yi on

treatment variable (OLS) and the full range of covariates with estimates from a regression of

∆Yi on the treatment variable weighted by balancing score produced by CBPS (WLS). The

following code estimates just-identified ATE version of CBPS along with imbalance statistics

and generates balancing score.

. * NSW sample

. local covs age education black hispanic married nodegree re74

. CBPS treat `covs´ if nsw, ate traceoff outputoff

. CBPS_imbalance

Total average covariate imbalance after cbps: 1.7e-04

Average covariate imbalance on the treated after cbps: .047

. predict bscore_nsw, p r

.

. * Polled sample

. CBPS treat `covs´, ate outputoff traceoff optimization_technique("nr")

. CBPS_imbalance

Total average covariate imbalance after cbps: 7.9e-05

Average covariate imbalance on the treated after cbps: 39.6

. predict bscore_all, p r

Average covariance imbalance on the treated using NSW sample amounts to 0.047 whereas

the same statistic on the pooled sample is 39.6. Notably, in terms of the treated units the

imbalance is by magnitudes higher in the latter sample. This result is expected, as CPS

subsample comes from different survey and so describes a different population than NSW.

Dehejia and Wahba (2002) provide more details on that issue.The overall balance is minimized
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to zero by applying the ATE.

. local covs age education black hispanic married nodegree re74

. reg dy treat `covs´ if nsw, noheader notable

. estimates store reg_nsw

. qui: reg dy treat [pw=bscore_nsw] if nsw

. estimates store wreg_nsw

. reg dy treat `covs´, noheader notable

. estimates store reg_all

. qui: reg dy treat [pw=bscore_all]

. estimates store wreg_all

. esttab reg_nsw wreg_nsw reg_all wreg_all, mtitles("NSW (OLS)" "NSW (WLS)" "pooled (OLS)"

> "pooled (WLS)") keep(treat) nonumbers

NSW (OLS) NSW (WLS) pooled (OLS) pooled (WLS)

treat 1375.2* 1754.3* 1485.4** 1672.8*

(2.05) (2.44) (2.60) (2.29)

N 445 445 16437 16437

t statistics in parentheses

* p<0.05, ** p<0.01, *** p<0.001

The first two columns present results on NSW sample, the following two on the pooled sam-

ple. Estimates using CBPS-based weights are numerically higher on both samples. However,

as the precision is pretty low, weighted regression (wls) estimates lie in the 95% confidence

intervals of standard regression (ols). CBPS weighting leads to similar results as using co-

variates in the conventional regression. Moreover, adding CPS observations seems not to

make affect much the performance of estimators.

Second, we analyze ATT. We obtain it using Heckman et al. (1997) difference-in-difference

matching estimator. It is a two-step procedure. First, we estimate the propensity score. The

results from CBPS will be compared to standard logit propensity score. Second, we apply the

psmatch2 command by Leuven et al. (2015) to run propensity score matching on ∆Yi. Since

the purpose of this example is mainly to show how to apply the function, we choose only
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one specification of the estimator - nearest-neighbor matching estimator with .005 caliper -

without justifying this choice from the econometric point of view. In addition, for ease of

exposition, we use a wrapper to psmatch2 command called psmatch3, which produces results

with desired names. The code for this wrapper is attached in the appendix.

. local covs age education black hispanic married nodegree re74

. qui: logit treat `covs´ if nsw

. CBPS_imbalance

Total average covariate imbalance after logit: 5.3e-03

Average covariate imbalance on the treated after logit: .045

. predict lscore_nsw if nsw, p

(15992 missing values generated)

. qui: logit treat `covs´

. CBPS_imbalance

Total average covariate imbalance after logit: .725

Average covariate imbalance on the treated after logit: .036

. predict lscore_all, p

. CBPS treat `covs´ if nsw, traceoff outputoff

. CBPS_imbalance

Total average covariate imbalance after cbps: .033

Average covariate imbalance on the treated after cbps: 1.0e-04

. predict pscore_nsw if nsw, p r

. CBPS treat `covs´, outputoff traceoff optimization_technique("nr")

. CBPS_imbalance

Total average covariate imbalance after cbps: .743

Average covariate imbalance on the treated after cbps: 7.3e-06

. predict pscore_all, p r

. psmatch3 lscore_nsw if nsw

. estimates store logit_nsw

. psmatch3 pscore_nsw if nsw

. estimates store cbps_nsw

. psmatch3 lscore_all

. estimates store logit_all

. psmatch3 pscore_all

. estimates store cbps_all
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. esttab logit_nsw cbps_nsw logit_all cbps_all, mtitles("NSW(logit)" "NSW(CBPS)" "pooled(l

> ogit)" "pooled(CBPS)") nonumbers keep(att)

NSW(logit) NSW(CBPS) pooled(log~) pooled(CBPS)

att 1140.6*** 1085.6*** 1319.4*** 1112.5***

(38.17) (36.87) (44.12) (37.82)

N 445 445 16437 16437

t statistics in parentheses

* p<0.05, ** p<0.01, *** p<0.001

As noticed before, NSW estimates constitute a benchmark for estimates on the pooled sample.

Since this is an experimental sample, any estimator should not suffer problems resulting

from nonrandom selection. In fact, one may observe that results do not differ significantly

regardless of which way of estimating the propensity score is chosen. However, once we add

observations from a different survey (CPS), the estimate using logit propensity score departs

quite a lot from the benchmark level whereas CBPS-based estimate is rather indistinguishable

between the two samples. This result suggests that the DID estimator using CBPS is robust

to using a imbalanced data sets.

6 Conclusion

CBPS estimator provides is a convenient way to deal with unbalanced data. Potential ap-

plications concern a broad scope of non-experimental issues. It is of particular use in causal

inference, assisting in obtaining a reliable counterfactual distribution. CBPS estimates of the

treatment effects are by construction perfectly balanced. The balancing weights may easily

be used for any further analysis. Being robust to misspecification, CBPS estimates may limit

the degree of bias in comparison with standard estimators using precalculated weights or

propensity score (Imai and Ratkovic, 2014).

This paper introduces Stata user-written package CBPS to estimate Covariate Balancing

Propensity Score. The syntax allows to obtain both the average treatment effect and the
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average treatment effect on treated. The syntax stores the estimated scores, they may be

recovered through predict command.
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Appendix

code of the command psmatch3

. capture program drop psmatch3

. program define psmatch3, eclass

1. syntax varlist [if]

2. marksample touse

3. qui : psmatch2 treat `if´ , outcome(dy) pscore(`1´) common caliper(.005) ne

> ighbor(1)

4. scalar v_att=r(seatt)

5. scalar r_att=r(att)

6. matrix b=r_att

7. matrix V=v_att

8. matrix colnames b="att"

9. matrix colnames V="att"

10. matrix rownames V="att"

11. local n=e(N)

12. eret post b V, obs(`n´) esample(`touse´)

13. eret local cmd "psmatch3"

14. end
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